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Supplementary Materials

Contents This is the supplementary material for the paper Separable Subsurface Scattering. It
includes:

· The present document.

· A document including the plots of the approximation kernels, compared against the actual kernel.

· The main Supplementary Video.

This document includes the following sections:

• B Detailed explanation of the Low-Rank Approximation

• C Derivation of our Pre-integrated Kernel

• D Motivation for the Guided Optimization

• E Detailed description of the shader implementation

• F Parameters of the profile simulations

• G Plots of the simulated diffusion profiles

We also include additional rendering results: Figure S.2 and S.5 show a comparison of all kernel
approximations for human skin, using the head model as well as artificial ‘dot’ illumination, respectively.
An additional example rendering of fruits on a plate is shown in Figure S.4. A second head model rendered
from multiple distances is included in Figure S.8, while Figures S.6 and S.7 illustrate the benefits of the
proposed jittered sampling approach.

B Low-rank approximations

In order to accurately approximate the diffuse reflectance profile Rd(x, y) with a sum of separable kernels

A(x, y) =
∑N
i=1 ai(x)ai(y), an adequate choice for the individual 1D functions ai is required. d’Eon and

colleagues [dLE07] observed that zero-mean Gaussians G are suitable for this task, i.e.,

Rd(x, y) ≈ Ag(x, y) =
N∑
i=1

wiG(x, y; τi), (S.1)

where τi denote the standard deviations of the respective Gaussians. Due to the separability of the
Gaussian kernel, the convolution with Ag can be realized as 2N 1D convolutions. During the computation
of adequate wi’s and τi’s, d’Eon et al. employed an L1 constraint such that ‖Ag‖1 = ‖Rd‖1, which
guarantees energy conservation of the approximation Ag. Furthermore, the Gaussian kernel is spherically
symmetric and thus Ag also exhibits this feature of the original profile.

We found, however, that emphasizing the closeness criterion and forfeiting radial symmetry yields
approximations that produce the same visual quality with less convolutions, i.e., with lower complexity
(see Figure S.5). Inspired by previous methods for low-rank approximations of reflectance data [LRR04,
PvBM∗06, KM99], we employ matrix factorization of the discrete 2D diffusion profile Rd ∈ Rm×m.
Following from the Eckhart-Young theorem [EY36], a truncation of the singular value decomposition
(SVD) of Rd gives the best low-rank approximation with respect to the Frobenius norm. In more detail,
given the SVD of the diffusion profile:

Rd = UΣV T ,

U =
(
u(1)|u(2)| . . . |u(m)

)
,

V =
(
v(1)| v(2)| . . . | v(m)

)
,

Σ = diag (σ1, σ2, . . . , σm) ,

(S.2)
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the exact solution to the approximation problem

min
A
‖Rd −A‖F ,

subject to rank(A) = N,
(S.3)

is given by
As = UΣNV

T ,

where ΣN = diag (σ1, . . . , σN , 0, . . . , 0) .
(S.4)

The Frobenius norm follows the classical definition, i.e., ‖A‖F =
√∑m

i=1

∑m
j=1 a

2
ij =

√∑m
i=1 σ

2
i and

corresponds to the L2 norm for continuous 2D functions. Note that ΣN is a diagonal matrix and the

approximation As can be written as a sum of separable kernels, i.e., AS =
∑N
i=1 u

(i) σi v
(i)T . The 1D

functions ai are therefore given by ai =
√
σiu

(i), since due to the symmetry of Rd, u
(i) = v(i).

While this approach does not preserve spherical symmetry and energy conservation, it provides optimal
closeness in the sense of the L2 norm. For low-rank approximations starting from N = 3, the diffusion
profile is more faithfully reconstructed, and the violation of both spherical symmetry and the L1 norm
are not perceivable. Energy conservation can be enforced by scaling the approximation As according to

Ãs = As
‖Rd‖1
‖As‖1 . Although the new approximation Ãs is not optimal in the L2 sense, it still provides a

perceptionally better match than the Gaussian approximation Ag with the same number of terms. Thus,
our SVD-based approximation scheme yields better performance and the same or superior visual quality
at the same number of 1D convolutions when compared to the Gaussian approximation (see Figure S.5).

C Derivation of the pre-integrated approximation

Here you can find a more extended version of the derivation of Equ. (4) in the main paper:

Me(x, y) =

∫∫
E(x′, y′)Rd(x− x′, y − y′) dx′dy′

=

∫∫
(E1(x′) + E2(y′))Rd(x− x′, y − y′) dx′dy′

=

∫
E1(x′)

∫
Rd(x− x′, y − y′) dy′︸ ︷︷ ︸

ap(x−x′)

dx′

+

∫
E2(y′)

∫
Rd(x− x′, y − y′) dx′︸ ︷︷ ︸

ap(y−y′)

dy′

=

∫
E1(x′) aP (x− x′) 1

‖ap‖1

∫
ap(y − y′) dy′︸ ︷︷ ︸
=1

dx′

+

∫
E2(y′) aP (y − y′)

︷ ︸︸ ︷
1

‖ap‖1

∫
ap(x− x′) dx′ dy′

=

∫∫
E(x′, y′)

1

‖ap‖1
ap(x− x′)ap(y − y′) dx′dy′

(S.5)

D Motivation for the guided rank-1 approximation

Motivated by the high quality of the pre-integrated approximation, we tried to achieve a practical opti-
mization framework that allows the user to emphasize either near or far scattering by manipulating only
a single parameter, similar to the two-Gaussian approximation, but starting from an accurate fit to an
actual diffusion profile. For a default parameter, the output should provide a ‘neutral’ approximation
close to the analytically derived pre-integrated approximation.

Stating the associated optimization problem as

as = argmin
a

∫
R2

Γ(x, y)
(
Rd(x, y)− a(x)a(y)

)2
dx dy

subject to ‖Rd‖1 = ‖a‖21,
(S.6)

we derive a separable approximation As(x, y) = as(x)as(y) to the diffuse reflectance profile Rd(x, y). The
guide function Γ(x, y) provides the means to alter the result to provide the desired artistic effect. Since
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(a) Γp(x, y) (b) Γ(x, y; 1.55)

Figure S.1: Comparison of the guide function that reproduces the pre-integrated approximation (left)
and our parametrized version that provides artistic control (right).

an arbitrary guide function would exhibit a huge amount of degrees of freedom, we aim to restrict its
shape to a one-dimensional subspace that serves the intended effect of pronouncing either near or far
scattering.

As a starting point, we tried to determine the guide function that would reproduce the pre-integrated
approximation, i.e., we numerically calculated a guide function Γp(x, y) such that

ap = argmin
a

∫
R2

Γp(x, y)
(
Rd(x, y)− a(x)a(y)

)2
dx dy

subject to ‖Rd‖1 = ‖a‖21,
(S.7)

where ap is the pre-integrated approximation of the previous Section C. As can be seen in Figure S.1a,
such a guide function exhibits a rather complicated structure. To reduce the associated complexity down
to a single parameter, we empirically defined a parametrized guide function

Γ(x, y; k) =
(
x2 + y2

)k/2
(1− e−bx

2

)(1− e−by
2

). (S.8)

The radially symmetric polynomial term with exponent k serves as external parameter to either emphasize
near or far scattering. A depiction of this function can be found in Figure S.1b for k = 1.55. Note that
this polynomial term reproduces the behavior of Γp(x, y) on the diagonals (while ignoring the minor
normalization-dependent details in the corners). To reproduce the shape of Γp along the coordinate axes,

we add ‘suppression’ functions in the form of 1 − e−bx2

and 1 − e−by2 , which cause the guide function
to vanish close to the coordinate axis. We chose b = 50 (assuming that x, y ∈ [−1, 1]), and the whole
framework is insensitive to moderate changes of this parameter. Varying the parameter k in the range from
0 to 4 allows the user to generate a separable approximation (as a result of Equation S.6) that emphasizes
near scattering (towards k = 0) or far scattering (towards k = 4). Note that no appreciable visual effects
are observable beyond k = 4. We have used sequential quadratic programming to minimize Equation
S.6. To avoid taking on a high-dimensional optimization problem immediately, we solve Equation S.6 for
low-resolution versions of the final kernel. Each optimization is then initialized with an interpolation of
the solution to the next-lower resolution.

E Shader Implemention Details

As our technique works in screen space, the size of the kernel is a function of the projected surface area
in the pixel, which depends on depth and surface orientation. This area is typically specified in world-
space units instead of pixels, making the definition of the kernel size more intuitive for artists. When
using a discretized kernel, the effect of the surface orientation can be taken into account by using ad-hoc
correction factors [JSG09].

In contrast, using the simplified two-Gaussian artist-friendly model Am allows us to work on real-
world distances: we transform the depth of the pixel being evaluated and of each sample to world space,
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and then calculate the distance d between them. This distance is used to apply the profile on the fly,
yielding more accurate results than using derivatives or ad-hoc correction factors. However, this approach
has two problems: (1) we cannot accurately bake the kernel weights by evaluating the area covered by
each sample (so we can only evaluate the kernel in the sample position), and (2) the number of slots
per sample used by the GPU (as generated by DirectX 11 fxc) increases from 16 in a simple ad-hoc
correction technique to 28, almost halving the performance, making it useless in production scenarios.
The latter problem has two reasons: a) converting from depth and pixel position to world-space requires
a few additional ALU instructions; b) evaluating a 2-Gaussian RGB profile requires 6 exp instructions,
which are extremely costly to execute even on modern GPUs.

We solve these problems by following an approach similar to the one proposed by Mikkelsen [Mik10],
splitting the 1D profile application on 3D distances d to 2D distances dxy with an accurate depth dz
correction factor. This transforms the evaluation of the kernel as:

am

(√
d2xy + d2z

)
= wG

(√
d2xy + d2z, τnear

)
+ (1− w)G

(√
d2xy + d2z, τfar

)
= w e

−d2z
2τnear G(dxy, τnear) + (1− w) e

−d2z
2τfar G(dxy, τfar)

≈ e
−d2z

2τmax

(
wG(dxy, τnear) + (1− w)G(dxy, τfar)

)
= e

−d2z
2τmax a′m(dxy),

where τmax = max(τnear, τfar). Note that we are making the approximation of taking the maximum
variance of the Gaussians, which simplifies the profile application to an accurate depth correction, versus
the ad-hoc corrections used in e.g. [JSG09]. This allows us to pre-compute accurate weights for a′m(dxy)
using area integration, and reduce the number of instructions to 16 by: a) reducing the number of exp

from 6 to a single one; b) avoiding the conversion to world space by directly working with depths; c)
applying typical low-level optimizations [Per14].

Figure S.2: Comparison of the different techniques proposed with d’Eon’s method [dLE07] with six
Gaussians, and the ground truth (actual 2D kernel). Note that our separable approximations lead to
similar quality results with just two 1D convolutions, as opposed to the twelve needed by the sum of
Gaussians approach. Note that all separable rank-1 kernels are highlighted with green.
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Figure S.3: Our results reveal that SVD-based low-rank approximations scale better with the number of
convolutions than the state of the art [dLE07], however, they still yield only a coarse approximation of
the true kernel in the separable case (rank-1). Note that all separable rank-1 kernels are highlighted in
green. The pre-integrated kernel is exact for axis-aligned functions, such as this example. The guided
optimization with k = 2 provides a comparably good fit, while the k = 0 case captures the fine details
near the boundary at the expense of the far-range scattering quality. A manual approximation using
our artist-friendly model is illustrated by two approximations, where for the first (close fit), perceptual
similarity to the ground truth was the modeling objective, while the second (production) was tweaked
by an artist for production purposes. Additional 2D visualizations of the different kernels are provided
in the second supplementary document, where we also demonstrate that the radial asymmetry of the
SVD-based kernels vanishes rapidly with increasing rank.

Figure S.4: Real-time results for apple. The insets show (from top to bottom) input irradiance, d’Eon et
al. [dLE07] with 1 Gaussian, our analytic kernel pre-integration technique and the ground truth. Both
d’Eon’s with one Gaussian and ours are run with the same number of convolutions, thereby yielding
similar execution times.
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Figure S.5: Additional results reveal the inherent shape and quality of the separable and low-rank ap-
proximations on a white disk irradiance signal. Please note that, although the radial asymmetry of our
separable kernels and the gradient-color differences of the manual approximations are noticeable in case
of the artificial ‘dot’ illumination, these artifacts are less noticeable in case of our practical rendering
examples.

(a) (b) 13 (Non-Jitt.) (c) 65 (Non-Jitt.) (d) 13 (Jittered)

Figure S.6: In harsh lighting conditions, extreme close-ups may reveal artifacts even in the presence of
importance sampling. (a) Initial image; (b) Importance sampling with 13 samples shows banding artifacts
(please zoom in in the digital version for a better view); (d) Up to 65 samples are needed to eliminate
visible banding; (c) Our jittering approach also eliminates banding while keeping the sample count low
(this image is best viewed in the digital version).
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(a) Without jittered sampling (b) With jittered sampling (33%) (c) Ground truth

Figure S.7: This figure illustrates that our jittered sampling scheme is able to remove banding artifacts
stemming from the radial asymmetry of our separable kernels. The images represent our manual approx-
imation (close fit) of human skin, which shows visible artifacts if no jittering is used (a), but is able to
approximate the ground truth (b) in a visually plausible way if 33% of the samples are jittered (c).

Figure S.8: Typical cases found in games, for which the technique is designed.
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F Profile Simulation (MCML)

The diffuse reflectance profiles were simulated using MCML [WJZ95]. The material parameters used
for our simulations were taken from an earlier work [JMLH01]. For each material, the RGB channels
were simulated separately. Aside from the material properties, each channel used the same parameters
specified as follows:

No. Photons: 107

Grid spacing: the minimum mean free path divided by 20 (dr =
min(MFPrgb)

20 ).

No. of grid elements: 32 times the maximum mean free path divided by dr (nr = d 32∗max(MFPrgb)
dr

e).

Thickness: 107 cm (quasi-infinite).

The mean free path is computed as 1
σ′t

= 1
σa+σ′s

. As we model isotropic scattering (g = 0), the reduced

scattering coefficient is trivial, i.e., σ′s = σs. For the use with MCML, all parameters are also converted to
cm, cm−1 or cm−2 respectively. MCML simulates cylindrically symmetric tissue models, and outputs the
diffuse reflectance profile as a 1D function, Rd(r). Detailed material parameters, plots of the simulated
profiles as well as the derived radially symmetric 2D profiles are included in Section G.

G Simulation Parameters and Results

This section includes the properties of each measured material, simulated 1D profile plots and derived
2D profiles for each material. This gives a detailed description of the input to our method. Due to
their extensive size, the output of our approximation methods to these inputs can be found in a separate
supplementay material. The 1D profiles shown in the first two subplots are weighted by 2πr because
the magnitude of the profile at a certain r value represents the reflectance on a complete circle of the
radially symmetric 2D profile, whose area increases as r is increasing. It is worth noting that although all
three channels were simulated up to the same maximum radius, the 1D profile plot may falsely suggest
otherwise. In the case of the logarithmic scale plots, all profile values near machine precision are omitted
by the plot function. In the MFP plots, all channel radii are scaled by the their respective MFP values,
and therefore each channel has different support on the x axis. Additionally, all MFP plots show the
unweighted profiles, and the 2D plots visualize only the most significant center region.
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G.1 Apple

Apple σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0030, 0.0034, 0.0460] [2.2900, 2.3900, 1.9700] 1.3000 0.0000 107

Figure S.9: Apple - Scattering properties
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Figure S.10: Apple - Simulation
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G.2 Chicken1

Chicken1 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0150, 0.0770, 0.1900] [0.1500, 0.2100, 0.3800] 1.3000 0.0000 107

Figure S.11: Chicken1 - Scattering properties
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Figure S.12: Chicken1 - Simulation
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G.3 Chicken2

Chicken2 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0180, 0.0880, 0.2000] [0.1900, 0.2500, 0.3200] 1.3000 0.0000 107

Figure S.13: Chicken2 - Scattering properties
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Figure S.14: Chicken2 - Simulation
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G.4 Cream

Cream σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0002, 0.0028, 0.0163] [7.3800, 5.4700, 3.1500] 1.3000 0.0000 107

Figure S.15: Cream - Scattering properties
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Figure S.16: Cream - Simulation
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G.5 Ketchup

Ketchup σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0610, 0.9700, 1.4500] [0.1800, 0.0700, 0.0300] 1.3000 0.0000 107

Figure S.17: Ketchup - Scattering properties
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Figure S.18: Ketchup - Simulation
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G.6 Marble

Marble σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0021, 0.0041, 0.0071] [2.1900, 2.6200, 3.0000] 1.5000 0.0000 107

Figure S.19: Marble - Scattering properties
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Figure S.20: Marble - Simulation
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G.7 Potato

Potato σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0024, 0.0090, 0.1200] [0.6800, 0.7000, 0.5500] 1.3000 0.0000 107

Figure S.21: Potato - Scattering properties
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Figure S.22: Potato - Simulation
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G.8 Skimmilk

Skimmilk σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0014, 0.0025, 0.0142] [0.7000, 1.2200, 1.9000] 1.3000 0.0000 107

Figure S.23: Skimmilk - Scattering properties
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Figure S.24: Skimmilk - Simulation
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G.9 Skin1

Skin1 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0320, 0.1700, 0.4800] [0.7400, 0.8800, 1.0100] 1.3000 0.0000 107

Figure S.25: Skin1 - Scattering properties
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Figure S.26: Skin1 - Simulation
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G.10 Skin2

Skin2 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0130, 0.0700, 0.1450] [1.0900, 1.5900, 1.7900] 1.3000 0.0000 107

Figure S.27: Skin2 - Scattering properties
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Figure S.28: Skin2 - Simulation
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G.11 Wholemilk

Wholemilk σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0011, 0.0024, 0.0140] [2.5500, 3.2100, 3.7700] 1.3000 0.0000 107

Figure S.29: Wholemilk - Scattering properties
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Figure S.30: Wholemilk - Simulation
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