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Figure 1: Examples from Star Wars: The Force Unleashed 2 (DLAA) and God of War III (MLAA). Original and anti-aliased images are split
horizontally; zoom-in to appreciate the details.

We encourage downloading the latest version of these course notes
in http://www.iryoku.com/aacourse.

1 Intro

For more than a decade, Supersample Anti-Aliasing (SSAA) and
Multisample Anti-Aliasing (MSAA) have been the gold standard
anti-aliasing solution in games. However, these techniques are not
well suited for deferred shading or fixed environments like the cur-
rent generation of consoles. Recently, Industry and Academia have
begun to explore alternative approaches, where anti-aliasing is per-
formed as a post-processing step. The original, CPU-based Mor-
phological Anti-Aliasing (MLAA) method gave birth to an explo-
sion of real-time anti-aliasing techniques that rival MSAA. This
course will cover the most relevant ones, from the original MLAA
to the latest cutting edge advancements. In the following text, we
will describe each technique, and establish the conceptual links be-
tween them to give the rationale behind the selection of techniques.

One of the first works that awakened the interest in filter-based ap-
proaches may be that of Jason Yang and colleagues (A Direction-
ally Adaptive Edge Anti-Aliasing Filter), given its implementation
at driver level. Using a custom, weighted resolve it increases the
number of steps in the gradients generated by MSAA, increasing

the perceived anti-aliasing quality. The resolve is done by using the
length of the isolines that cross a pixel as subpixel weights. This al-
lows quality equal to a standard hardware resolve with 2 to 3 times
less the number of samples. Jason Yang (AMD) will present the
details of this technique.

Unfortunately, many popular rendering techniques such as deferred
shading cannot directly take advantage of MSAA, and are best
suited to non-multisampled framebuffers. The advent of MLAA
demonstrated that high-quality antialiasing results can be obtained
by inferring subpixel coverage and forming a plausible antialiased
edge from such a buffer. Alex Reshetov (Intel Labs) will explain
the core idea of MLAA, and describe the problems that following
implementations solve.

Although MLAA was aimed at offline ray-tracers, this changed in
late 2009, when the Playstation 3 game God of War III started us-
ing MLAA as its AA solution. The algorithm was moved to the
PS3’s Synergistic Processing Units, freeing up significant amounts
of GPU time over MSAA, while delivering very high image qual-
ity. The code was subsequently made available to all PS3 develop-
ers and is being deployed in games such as Killzone 3, LittleBig-
Planet 2, as well as a host of other titles. Tobias Berghoff (SCE
WWS ATG) will for the first time reveal the inner workings of
this method and share recent improvements and lessons learned.

http://www.iryoku.com/aacourse


Cedric Perthuis (SCE WWS Santa Monica) will discuss the inte-
gration into God of War III, showing the benefits and pitfalls of the
technique live on a special build of the game.

However, SPU hardware is only available on the PS3 platform. The
work of Jorge Jimenez and colleagues addressed this issue, being
the first GPU adaptation that performed in practical execution times
for the PC platform, by transforming the algorithm to use texture
structures and making extensive use of hardware facilities and pre-
computation. Jorge Jimenez (Universidad de Zaragoza) will explain
the mapping of the original algorithm to a GPU, as well as all the
details behind Jimenez’s MLAA. In concurrent work, Demoreuille
devised a very efficient Hybrid CPU/GPU implementation for the
Xbox 360, that was deployed with the game Costume Quest, the
first known game to ship with MLAA in the Xbox 360. Pete De-
moreuille (Double Fine) will describe this hybrid approach, includ-
ing edge detection routines and integration issues for Double Fine
games.

Conceptually, MLAA-like algorithms consist of: a) detecting
edges; b) calculating neighborhood weights; and c) blending with
the neighborhood. From now on, a series of alternative techniques
will be presented that replace, improve or approximate various of
these components, but that are in essence, closely related.

When working with a non-multisampled image, undersampling
problems with subpixel features are unavoidable. Chajdas et al.
introduced Subpixel Reconstruction Anti-Aliasing (SRAA), which
extends MLAA with additional buffers that provide this informa-
tion at low cost. The key difference with MLAA is that SRAA cal-
culates blending weights from a multisampled depth buffer by us-
ing a continous edge detection, which allows blending weights to be
determined without an expensive pattern search. Morgan McGuire
(Williams College and NVIDIA) will give an insight into this tech-
nique.

Fast approXimate Anti-Aliasing (FXAA) is a cutting-edge, unre-
leased technique being developed in NVIDIA by Timothy Lottes.
FXAA deals with edge aliasing in similar way to MLAA, but to
maximize performance it adapts the algorithm to take advantage of
specific hardware features. For example, FXAA takes advantage
of anisotropic texture fetch for an approximate end of edge search.
It can be considered a dual algorithm, as it is able to detect and
reduce both sub-pixel and edge aliasing problems. Timothy Lottes
(NVIDIA) will describe GPU optimizations and FXAA’s method to
handle sub-pixel aliasing.

In concurrent work with MLAA, Hugh Malan devised Distance-to-
Edge Anti-Aliasing (DEAA), which is very similar in spirit. How-
ever, DEAA departs from the MLAA pattern search, eliminating it
from the pipeline: instead, the forward rendering pass pixel shaders
calculate the distance to each triangle edge with subpixel precision,
and stores them in a separate rendertarget. The postprocess pass
uses this information to derive blend coefficients. Hugh Malan
(CCP) will present this technique, giving additional results from the
initial work to integrate this anti-aliasing technique with the MMO
APB.

In the middle of 2010, Dmitry Andreev introduced Directionally
Localized Anti-Aliasing (DLAA), which was the method of choice
for Star Wars: The Force Unleashed 2. This technique makes a fur-
ther simplification over MLAA, by working in a perceptual space:
exact gradients produced by the exact covered areas may not be re-
quired. Instead of calculating weights, it makes use of vertical and
horizontal blurs to produce gradients in the aliased edges. Gradients
with different number of steps are used for the two kind of edges
considered: short and long. DLAA doesn’t replace pattern search
but totally eliminates it. Dmitry Andreev (Lucas Arts) will present
an in-detail description of DLAA.

All the techniques presented so far use spatial filters to prevent
aliasing. However, there is also a growing trend towards the use of
temporal filters to attenuate aliasing in games, Halo: Reach and Cr-
ysis 2 being two pioneers in this respect. In the Crysis 2 approach,
anti-aliasing is calculated by accumulating frames over time, by us-
ing temporal reprojection. Tiago Sousa (Crytek) will provide all the
details of the Crysis 2 approach, finishing the course with a slightly
different approach to make sure the audience knows that the sky is
the limit.

The course is aimed at all attendees, from casual users who just
want to better understand post-processing anti-aliasing techniques
to researchers and game developers, for whom we provide imple-
mentation details and code-snippets to allow them to quickly ex-
plore their own ideas in this explosively growing area. We believe
this course may lead to more coordinated efforts in the following
years, and serve as a solid base for future research.

2 About the Lecturers

Jorge Jimenez
Universidad de Zaragoza
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Jorge Jimenez is a real-time graphics researcher at the Uni-
versidad de Zaragoza, in Spain, where he received his BSc and
MSc degrees, and where he is pursuing a PhD in real-time graphics.
His interests include real-time photorealistic rendering, special
effects, and squeezing rendering algorithms to be practical in game
environments. He has various contributions in books and journals,
including Transaction on Graphics, where our skin renderings
made the front cover of the SIGGRAPH Asia 2010 issue.

Diego Gutierrez
Universidad de Zaragoza
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Diego Gutierrez is an Associate Professor at the Universidad
de Zaragoza, where he got his PhD in computer graphics in 2005.
He now leads his group’s research on graphics, perception and
computational photography. He is an associate editor of three
journals, has chaired and organized several conferences and has
served on numerous committees including the SIGGRAPH and
Eurographics conferences.

Jason Yang
AMD

Jason Yang is a Principal Member of Technical Staff for Ad-
vanced Technology Initiatives at AMD where he has contributed
to graphics, physics, video, encryption, and GPGPU technologies.
Recently he worked on the Radeon 6000 series demo titled
”HK2207”. He received his BS and PhD from MIT.

Alexander Reshetov
Intel Labs
http://visual-computing.intel-research.net/
people/alex.htm

Alex Reshetov received his Ph.D. degree from Keldysh Insti-
tute for Applied Mathematics (in Russia). He joined Intel Labs
in 1997 as a senior staff researcher after working for two years at
the Super-Conducting Super-Collider Laboratory in Texas. His
research interests span 3D graphics algorithms and applications,
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and physically based simulation.

Pete Demoreuille
Double Fine

Pete Demoreuille is a Lead Programmer at Double Fine Pro-
ductions, working on all aspects of the engine and graphics
technology. Prior to Double Fine he was at Pixar Animation
Studios, working on the internal animation and modeling systems,
and developing new rendering and lighting tools for Cars.

Tobias Berghoff
Sony Computer Entertainment WWS ATG

Tobias Berghoff first got paid for making games when he
joined Ascaron Entertainment in 2005. Later, he spent a year
making GPUs stare at the sun for the Royal Observatory of
Belgium, before moving on to the Advanced Technology Group
of Sony Computer Entertainment’s World Wide Studios. He now
works on graphics related technologies for PS3 and NGP. Tobias
holds an Informatik Diplom from the University of Paderborn.

Cedric Perthuis
Sony Computer Entertainment WWS Santa Monica

Cedric Perthuis started his work in the graphics community
at Intrinsic Graphics in 2002. He quickly joined Sony Computer
Entertainment to build the original Playstation Cross Media Bar.
After some work on embedded devices in the startup Emdigo, he
co-developed Cg for PS3 in the PSGL group. He then became
lead PS3 engineer for the Swedish studio Grin, before joining
Sony Santa Monica Studio where he has been actively researching,
developing and optimizing new rendering techniques. He recently
shipped God of War 3. Cedric has a Master’s degree in Applied
Mathematics and Computer Science from ENSEEIHT, Toulouse,
France.

Henry Yu
Kalloc Studios

Henry Yu is the founder and technical director of Kalloc
Studios, in developing game engine technology and tool pipeline
for consoles and PC platforms.

Morgan McGuire
NVIDIA and Williams College
http://www.cs.williams.edu/˜morgan/

Morgan McGuire is a professor at Williams College and vis-
iting professor at NVIDIA Research. He co-chaired the I3D 2008,
2009, and NPAR 2010 conferences, is a member of the Journal of
Graphics, Game, and GPU Tools editorial board, and the lead au-
thor of Creating Games: Mechanics, Content, and Technology. He
has contributed to many commercial products including the E-Ink
display for the Amazon Kindle, the PeakStream high-performance
computing infrastructure acquired by Google, the Titan Quest role
playing game, and the Marvel Ultimate Alliance 2 video game for
Xbox 360. His current research is in high-performance parallel
algorithms and sampling techniques.

Timothy Lottes
NVIDIA
http://timothylottes.blogspot.com/

Timothy Lottes is an Engineer in the Developer Technology
group at NVIDIA. Prior Timothy was a console game developer
at Human Head Studios, in Systems Research and Development at
Industrial Light and Magic, and owner/photographer/developer of
Farrar Focus, a fine art landscape photography and digital photo
development tools business.

Hugh Malan
CCP

Hugh Malan is a graphics programmer working on Dust 514
at CCP, in Newcastle. Previously he worked as graphics lead for
Crackdown and MyWorld for Realtime Worlds. Hugh is a graduate
of Victoria University and Otago University, New Zealand.

Emil Persson
Avalanche Studios
http://www.humus.name/

Emil Persson is a graphics programmer at Avalanche Studios
where he is working on advanced rendering techniques and opti-
mizations. Previously he worked as an ISV Engineer at ATI/AMD
developer relations where he assisted the top game developers
with rendering techniques and optimizations, in addition to R&D
and SDK development. Emil also runs the site www.humus.name
where he provides open source graphics samples to the community.

Dmitry Andreev
Lucas Arts
http://and.intercon.ru/

Dmitry Andreev is a rendering engineer and video games
developer with more than 10 years of experience. He started his
journey from 8-bit machines and got famous for his 64k intros in
the demoscene, pushing the bar of competition at the time. Worked
on all variety of game genres including FPS, RPG and Action
games, leading development of core technology and graphics. Over
past years he has been pushing real-time graphics in high-end AAA
titles to its limits on PlayStation3 and XBox360 consoles with
elegant and simple high-performance solutions. B.S. in Applied
Mathematics and Mechanics.

Tiago Sousa
Crytek

Tiago Sousa is Crytek’s Principal R&D Graphics Engineer,
where he has worked for past 8 years, on all Crytek numerous
demos, shipped game titles and engines, including Far Cry, Crysis
and more recently finished Crysis 2 - Crytek’s first multiplatform
game. He is a self-taught graphics programmer, who before joining
Crytek army on the cause of world domination, cofounded a
pioneering game development team in Portugal and very briefly
studied computer science at Instituto Superior Técnico, which he
still has hopes to finish one day.

3 Morphological Antialiasing

Speaker: Alexander Reshetov (Intel Labs)

Morphological AntiAliasing (MLAA) algorithm belongs to a fam-
ily of data-dependent filters allowing efficient anti-aliasing at a
post-processing step. The algorithm infers sub-pixel coverage by

http://www.cs.williams.edu/~morgan/
http://timothylottes.blogspot.com/
http://www.humus.name/
http://and.intercon.ru/


Figure 2: Fairy Forest model: morphological antialiasing im-
proves the quality of the rendered image without having a signif-
icant impact on performance. The algorithm uses separation lines
falling between perceptually different pixels to infer silhouette lines
and then blend colors around such silhouettes.

estimating plausible silhouettes from a collection of axis-aligned
separation lines that fall between perceptually different pixels (see
Figure 2).

The algorithm consists of the following steps:

1. Noticeably different pixels are identified. Figure 3 shows a
sample image with solid axis-aligned lines separating differ-
ent pixels.

2. Piecewise-linear silhouette lines are derived from the sepa-
ration lines. This is illustrated in Figure 3 with a Z-shape
formed by b-c-d lines and a U-shape defined by d-e-f lines.
In MLAA, silhouette segments originate at the edges of pix-
els that have both horizontal and vertical separation lines (all
such pixels are shown with stripped shading). Not all poten-
tial end-points are used. The exact placement of end-points is
somewhat arbitrary, with half-edge points producing satisfac-
tory results.

3. Color filtering is performed for all pixels intersected by sil-
houette lines. Essentially, this is done by propagating colors
on opposite sides of separation lines into polygons formed by
silhouettes and separation lines, as illustrated at the bottom
of Figure 3. The areas of these polygons are used for color
mixing.

Any data that helps quantify differences between pixels can be used
as an input at the first step of the algorithm (z-depth, normals, ma-
terial ids, etc.) At the same time, the smallest amount of data to use
is, obviously, color data itself. Since similarly-colored pixels tend
to group together, this information can be used to infer plausible
silhouettes between such groups. We use luminance according to
ITU-R recommendations.

To identify all valid silhouettes (at the second step of the algo-
rithm), we find all possible horizontal and vertical separation lines
(between different pixels) and then

2.1. look at all start/end points on adjacent orthogonal lines and

2.2. choose the longest segment (preferring Z-shapes over U-
shapes if multiple shapes are possible). This is illustrated in
Figure 4;

2.3. if both horizontal and vertical silhouette lines intersect a pixel,
we process only the longest silhouette line (preferring the hor-
izontal one in the case of a tie). In Figure 3, both light-blue
and dark-blue end-points can generate silhouette lines, but we
choose only those bounded by dark-blue points.

Super-sampling is the gold standard for antialiasing, since it emu-
lates integration processes in a camera or a human eye by averaging
multiple samples per pixel. In MLAA, we assume that samples on
the same side of a given silhouette line have the same color (pink
and khaki colors in Figure 3). This allows evaluating the integral by
computing areas of trapezoids formed by the silhouette line and the
corresponding separation line. These areas vary linearly from pixel
to pixel, allowing an efficient implementation. Of course, this ap-
proximation breaks when multiple silhouette lines cross the pixel,
resulting in overblurring.

Among MLAA advantages,

• it is a universal algorithm, which can operate on the least pos-
sible amount of data — pixel colors;

• it is embarrassingly parallel and independent from the ren-
dering pipeline, allowing efficient implementation on modern
hardware;

• the quality is comparable with 4X supersampling.

At the same time,

• by relaying on a single sample per pixel, MLAA is predis-
posed to creating image artifacts in areas where image fea-
tures are commeasurable with pixel sizes (Nyquist limit);

• it is susceptible to temporal artifacts;

• varying lighting can trigger silhouette changes in static scenes
(if a color-based edge detector is used);

• it can mangle small text;

• there could be additional artifacts near image border as for
any other screen-space technique.

We refer the reader to Morphological Antialiasing [Reshetov 2009]
for full details.

4 A Directionally Adaptive Edge Anti-
Aliasing Filter

Speaker: Jason Yang (AMD)

Authors: Konstantine Iourcha and Jason Yang and Andrew Pomi-
anowski

In current GPU multisample anti-aliasing (MSAA), a pixel is lim-
ited by the number of available hardware samples. So, with 8x AA,
meaning eight hardware samples, with traditional MSAA you can
achieve at most eight levels of color gradation along an edge. Given
the horsepower of today’s GPUs, can we do better?

Our filter uses existing MSAA hardware and improves filtering by
going outside the pixel. The main idea is that in areas of low edge
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Figure 3: A sample picture illustrates the main MLAA concepts.
Solid axis-aligned lines separate different pixels. Top: recon-
structed silhouettes are shown as red lines. Bottom: filtering
through color propagation.

Figure 4: Ambiguity resolution: even though multiple silhouette
lines are possible, the longest one is used.

curvature, you can imagine isolines of the image function. You can
then use samples outside of a pixel on these isolines to reconstruct
a pixel.

How do you find the isolines? You can use a linear approximation
by reducing this to a least squares problem.

Basically fitting a plane to the color samples. Or think of it as a
linear regression. This should be the A-ha moment to solving the
problem.

So, once this problem you know the gradient, then you use the in-
tegration method from the paper. The basic idea is you use samples
both inside and outside of the pixel where the weight of the sample
is determined by how much the isoline intersects with the pixel.

See A directionally adaptive edge anti-aliasing filter [Iourcha et al.
2009] for full details.

5 Practical Morphological Anti-Aliasing
(Jimenez’s MLAA)

Speaker: Jorge Jimenez (Universidad de Zaragoza)

Authors: Jorge Jimenez and Belen Masia and Jose I. Echevarria
and Fernando Navarro and Diego Gutierrez

Multisample anti-aliasing (MSAA) remains the most extended so-
lution to deal with aliasing, crucial when rendering high quality
graphics. Even though it offers superior results in real time, it
has a high memory footprint, posing a problem for the current
generation of consoles, and it implies a non-negligible time con-
sumption. Further, there are many platforms where MSAA and
MRT (multiple render targets, required for fundamental techniques

Figure 5: Images obtained with Jimenez’s MLAA. Insets show
close-ups with no anti-aliasing at all (left) and processed with our
technique (right). Images from Fable R© III courtesy of Lionhead
Studios.

such as deferred shading) cannot coexist. The majority of alterna-
tives to MSAA which have been developed, usually implemented
in shader units, cannot compete in quality with MSAA, which re-
mains the gold standard solution. This work introduces an alter-
native anti-aliasing method offering results whose quality averages
at 16x MSAA (from a gradients quality perspective) at a fraction
of its memory and time consumption (see Figure 5 for some ex-
amples). Besides, the technique works as a post-process, and can
therefore be easily integrated in the rendering pipeline of any game
architecture.

The technique is an evolution of the work ”Morphological An-
tialiasing”, which is designed for the CPU and unable to run in
real time. The method presented here departs from the same under-
lying idea, but was developed to run in a GPU, resulting in a com-
pletely different, extremely optimized, implementation. We shift
the paradigm to use texture structures instead of lists (See Figure 6),
which in turn allows to handle all pattern types in a symmetric way,
thus avoiding the need to decompose them into simpler ones, as
done in previous approaches. In addition, pre-computation of cer-
tain values into textures allows for an even faster implementation.

The algorithm detects borders (using color, depth, normals or in-
stance id’s information) and then finds specific patterns in these.
Anti-aliasing is achieved by blending pixels in the borders intel-
ligently, according to the type of pattern they belong to and their
position within the pattern. Pre-computed textures (see Figure 7)
and extensive use of hardware bilinear interpolation (see Figures 8
and 9) to smartly fetch multiple values in a single query are some
of the key factors for keeping processing times at a minimum.

Typical execution times are 1.3 ms on Xbox 360 and 0.44 ms on a
nVIDIA GeForce 9800 GTX+, for a resolution of 720p. Memory
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Figure 6: In Jimenez’s MLAA, and starting from an aliased image (left), edges are detected and stored in the edges texture (center left). The
color of each pixel depicts where edges are: green pixels have an edge at their top boundary, red pixels at their left boundary, and yellow
pixels have edges at both boundaries. The edges texture is then used in conjunction with the precomputed area texture to produce the blending
weights texture (center right) in the second pass. This texture stores the weights for the pixels at each side of an edgel in the RGBA channels.
In the third pass, blending is performed to obtain the final anti-aliased image (right).

Figure 7: Patterns processed by Jimenez’s MLAA (left) and
their corresponding pre-calculated weights depending on their size
(right). Each 9×9 subtexture corresponds to a pattern type. Inside
each of these subtextures (u, v) coordinates encode distances to the
left and to the right, respectively.

Figure 8: In Jimenez’s MLAA, hardware bilinear filtering is used
when searching for distances from each pixel to the end of the line.
The color of the dot at the center of each pixel represents the value
of that pixel in the edges texture. In the case shown here, distance
search of the left end of the line is performed for the pixel marked
with a star. Positions where the edges texture is accessed, fetching
pairs of pixels, are marked with rhombuses. This allows us to travel
double the distance with the same number of accesses.

footprint is 2x the size of the backbuffer on Xbox 360 and 1.5x
on the 9800 GTX+. Meanwhile, 8x MSAA takes an average of
5 ms per image on the same GPU at the same resolution, 1180%
longer for the PC case (i.e. processing times differ by an order
of magnitude). The method presented can therefore challenge the
current gold standard in real time anti-aliasing.

See Practical Morphological Anti-Aliasing [Jimenez et al. 2011]
for full details. Visit http://www.iryoku.com/mlaa for latest news,
source code releases, a showcase gallery, performance tables, a
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Figure 9: Examples of the four possible types of crossing edge and
corresponding value returned by the bilinear query of the edges tex-
ture (Jimenez’s MLAA). The color of the dot at the center of each
pixel represents the value of that pixel in the edges texture. The
rhombuses, at a distance of 0.25 from the center of the pixel, indi-
cate the sampling position, while their color represents the value
returned by the bilinear access.

F.A.Q., and more.

6 Hybrid Morphological Anti-Aliasing

Speaker: Peter Demoreuille (Double Fine)

Despite the original Morphological Anti-Aliasing (Reshetov) ap-
proach being purely CPU-based and seemingly unsuitable for re-
altime use, the attractive properties of a high-quality post-process
antialiasing solution have driven the development of several im-
plementations suitable for real-time applications. Practical Mor-
phological Anti-Aliasing (Jimenez et al) presents a optimized GPU
adaptation, including implementation details for PC and the Xbox
360. In their approach, all three fundamental stages of the algo-
rithm (edge detection, blend weight calculation and image filtering)
are performed on the GPU in separate passes. Memory require-
ments are low, and performance is very good (0.44 ms on a nVIDIA
GeForce 9800 GTX+ at 720p), though GPU utilization may be un-
predictable, as it is a function of the number of edges found in the
scene. Low latency MLAA in God of War III and PlayStation EDGE
MLAA (Perthuis and Berghoff) present an optimized implementa-
tion for the PlatStation3 where the entire algorithm is performed in
parallel on several SPUS, offloading all work from the GPU.

Hybrid Morphological Anti-Aliasing presents an implementation of
MLAA for the Xbox 360 where the edge detection and filtering
stages of the algorithm are performed on a GPU, and the blend
weight calculations are performed on CPUs. This approach shares
the low memory requirements of Practical Morphological Anti-
Aliasing, and offloads a great deal of work from the GPU just as
PlatStation EDGE MLAA. However, a hybrid CPU/GPU algorithm
has several advantages when compared to a pure CPU or GPU algo-
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rithm. Utilizing the GPU trivially allows the use of non-color data
when detecting edges (such as depth, material and normal data),
allowing more stable edges and avoiding some jittering artifacts
common when using only color. Use of a GPU also allows the
use of linear-intensity colors, both when detecting edges and when
blending. Lastly, using the CPU to compute blend weights saves a
great deal of GPU time, and leaves the GPU performing only those
passes that have small, fixed costs, allowing GPU performance of
the algorithm to be strictly bound.

While using the GPU for some stages has advantages, using the
CPUs for others has tradeoffs, including non-trivial CPU/GPU
communication and potentially heavy utilization of CPU time. We
present techniques to optimize calculations by reducing the band-
width requirements of the algorithm, including packing data and
performing a very fast transpose of the input data to optimize cache
utilization during vertical edge calculations. CPU utilization is
further reduced by adapting calculations to be better suited to the
Xbox’s PowerPC architecture. Additional controller latency may
be added due to overhead in CPU/GPU communication, and we de-
scribe how our implementation rearranges work to avoid adding la-
tency to our titles. As each of our titles has unique visual styles and
different average scene construction, several edge detection tech-
niques were used to ensure filtering produced acceptable results.
We will present these techniques and various tips to avoid overblur-
ring, missing edges, and maintaining stable filtering.

As each stage of the MLAA algorithm may be tuned for individual
applications, we hope to provide additional options for develop-
ers creating their own anti-aliasing solutions, so that they may best
fit the performance, quality and memory restrictions placed upon
them.

7 PlayStation R©Edge MLAA

Speakers: Tobias Berghoff and Cedric Perthuis

Authors: Tobias Berghoff, Cedric Perthuis and Matteo Scapuzzi

PlayStation R©Edge MLAA is an implementation of the Morpholog-
ical Anti-Aliasing (MLAA) algorithm for the Sony PlayStation R©3
console.

It is used in a number of high-profile games and has undergone a
series of improvements and optimizations since its inception. In
this talk, we will provide an overview of this process and its results,
focusing on how to fit the algorithm to the PS3TM’s unique archi-
tecture and significantly improve the image quality provided by the
method. Both successful and unsuccessful approaches will be ex-
amined, to provide the listener with a well rounded understanding
of the problem space.

7.1 MLAA on SPUs

Our implementation runs on the main processing units of the Cell
Broadband EngineTM, the Synergistic Processing Units, or SPUs.
These units are interconnected through a high speed ring bus and
have each 256KB of private fast low-latency memory (Local Store,
or LS). The processing elements themselves consist of a high-
performance dual-issue SIMD processor coupled with a DMA en-
gine. Each of these features had significant influence on the design
of the system.

Initially, we experimented with a tile-based implementation, where
the image would be divided into rectangular regions, each small
enough to fit into LS. This would allow the processing of arbitrar-
ily sized images and an easy balancing of LS budgets, as the tile

Figure 10: Example results of Hybrid Morphological Anti-Aliasing
from Costume Quest, Stacking and Once Upon a Monster.



Figure 11: From left to right: Edges detected with basic threshold-
ing, relative thresholding, predicated thresholding.

Figure 12: From left to right: Source image, relative thresholding,
relative thresholding with feature splitting.

size could be changed depending on other needs for memory. A li-
brary of post-process effects implemented in this fashion is already
available in the form of PlayStation R©Edge Post, making a unified
approach attractive.

Due to artifacts caused by the tiling, this implementation was dis-
carded early on, and a more classical scan-line approach was cho-
sen and later shipped in God of War R©III. This scan-line based
approach only implements a horizontal MLAA step and uses an
in-place pseudo-transpose to implement the vertical step. The al-
gorithm itself begins with an edge detection step, followed by a
number of sequence algorithms on the edges found. The goal of
this approach is to quickly reduce the length of the sequence using
comparatively cheap loops before executing more expensive loops.
This approach is viable, as LS accesses are very fast and are exe-
cuted by a different pipe (the odd pipe) in the processor as the ALU
operations (which are executed in the even pipe). We can thus use
the odd pipe to load and prepare data for consumption by the even
pipe, as well as pack and store it for the next processing step.

7.2 Image Quality Improvements

For the original MLAA paper, a very simple edge detection system
was intentionally used for reasons of simplicity. While this was
intended as a placeholder for more sophisticated edge detection al-
gorithms, the method is still widely used today. While working on
God of War R©III we quickly realized that the quality of the edge de-
tection was one of the most important ingredients for image quality
and temporal stability. As a first step, the basic edge detection sys-
tem was replaced with a method that is better suited for images with
varying levels of brightness along features and over time.

Furthermore, we introduced the ability to cut an edge into multi-
ple parts, thus allowing a better handling of adjacent edges. This
is primarily an improvement in areas with a very high edge den-
sity, where it make the edge cases approach a slight blur instead of
adding additional noise to them, as shown in figure 12.

As there are limits to how well we can detect an edge in color data
alone, we introduced the concept of a predicated edge detection,

Figure 13: Comparison between the Xbox 360 and the PS3 ver-
sions of The Saboteur, without anti-aliasing and with SPUAA re-
spectively. Images from Digital Foundry:
http://www.eurogamer.net/articles/digitalfoundry-saboteur-aa-blog-entry

which first performs edge detection on non-color data and then con-
trols the sensitivity of the color data edge detection based on this.
The non-color data can be generated for this specific purpose, like
object IDs, or be a byproduct of the rendering process like depth.
Of course, the availability of suitable data is highly dependent on
the rendering systems of individual games, and as such this method
is less generic than a purely color based one.

Figure 11 shows a comparison of the thresholding methods. Pred-
icated thresholding has important advantages over approaches that
do not base the final decision of processing a ”edge” on the color
data.

8 Using SPUs for Anti-Aliasing in The Sabo-
teur

Speaker: Henry Yu (Kalloc Studios)

Authors: Henry Yu, Ian Elliot and David Clamage

Kalloc Studios was contracted to adapt The Saboteur to function
on PS3 concurrent to Pandemic Studios’ development of The Sabo-
teur’s content and Xbox 360 version. As a result, we had many
unique challenges to overcome in altering a continuously changing
product to a platform known to be powerful but difficult to develop
for, amongst the most difficult of which was posed when Pandemic
Studios requested that the PS3’s release of The Saboteur contain
anti-aliasing (see Figure 13). The Saboteur’s final SPU anti-aliasing
method (internally dubbed ‘SPUAA’) was created independently of
knowledge of Morphological Anti-Aliasing (MLAA) techniques,
although it resembles them in many ways.

Several standard anti-aliasing techniques were initially investi-

http://www.eurogamer.net/articles/digitalfoundry-saboteur-aa-blog-entry


gated, including using MSAA and using a full-screen post-
processing shader on the GPU. MSAA was quickly eliminated as an
option due to the high cost for both graphics memory and GPU time
when rendering to a larger buffer, as well as the technical difficulty
of using a deferred rendering pipeline with MSAA. The full-screen
post-processing shader was rejected due to underwhelming results
along with a 2.4ms cost on the GPU, which was already over-budget
without an anti-aliasing techniques. Due to similar limitations, the
Xbox 360 version of The Saboteur used no anti-aliasing solution.
The only resource on the PS3 that had time to spare were the SPUs,
so we investigated the possibility of using the SPUs for anti-aliasing
by analyzing the final color buffer, which at the time was a method
we had not heard of from other PS3 games.

After all rendering has been performed by the GPU, the follow-
ing conceptual steps are taken by the SPUs to perform the Anti-
Aliasing. Start by determining Edges, Calculate luminance based
on the final 24-bit RGB output color buffer and threshold the abso-
lute difference between directly adjacent pixel luminance to deter-
mine edges. Then find edge streaks, a run of adjacent edges which
terminate with a normal oriented edge. Each pixel is populated with
the type and length of the streak in each screen space direction (up,
down, left, right). The type of the streak is whether its terminating
edge is toward the negative side, toward the positive side, or on both
sides. The length of the streak is up to 63 pixels, saturated. Next,
population of streak occurs in two passes. A diagonal line of 80x80
pixel tiles moving down and right simultaneously from the top left
corner, and another moving up and left simultaneously from the bot-
tom right corner. Finally, tween edges. Select the longest combined
edge streak, with vertical or horizontal streaks combined. Compute
the ‘shape’ of the streak, based on which side the pair of termi-
nating edge sets reside on, determining the exact tweening shape.
Then blend the pixel with appropriate adjacent pixels based on the
determined tweening shape and location upon the edge streak.

The weaknesses exhibited by this technique are similar to observed
weaknesses in other MLAA family algorithms. Most notably, it has
poor handling of sub-pixel detail. Also, the simple edge reconstruc-
tion model fails to account for ‘hitches’ in aliased results as a result
of arbitrary line slopes. (With SPUAA, reconstructed slopes only
take the form of 1/t or t/1 with t as an integer). Additionally, Moiré
patterns are evident in texture sampled surfaces which can cause
spurious and flicker-like results especially with minor camera an-
gle changes due to spatiotemporally discontinuous edge detection
of visually relevant features.

For the implementation in The Saboteur, there were a few details
that, given more time, could have been even more optimal. SPUAA
was performed in three rounds. The first round computed lumi-
nance and stored the result into the unused alpha channel of the
final GPU render target buffer. The second round marked edges
and computed right / down edge streaks across diagonal tile sets.
The third round computed left / up edge streaks diagonal tile sets
and performed edge tweening.

In the future, better performance could be gained through a few
changes to the implementation in The Saboteur. First, the lumi-
nance computation, edge marking, and right/down edge streak de-
tection could occur in the same round, saving redundant data trans-
fer. Second, in the last phase only top left and top right relevant
streak information needs to be written out for the next diagonal
set, which would also reduce data transfer requirements. Finally,
though SPUs are very fast at floating point mathematics, it would
have been faster for computation to perform tweening by using soft-
ware ratio approximations instead of hardware division approxima-
tions to compute the main tweening lerp coefficients.

The only input to SPUAA is the final color buffer of the scene, and

it spends the next frame processing the scene. Because of the low
requirements on how the existing graphics pipeline is implemented,
the technology is portable and can be quickly integrated into any
PS3 game. Despite potential for improvement, the resulting method
used in The Saboteur both looked better than our expectations, as
well as being within budget for SPU time, GPU time, and memory
use.

9 Subpixel Reconstruction Anti-Aliasing
(SRAA)

Speaker: Morgan McGuire (NVIDIA and Williams College)

Authors: Matthäus G. Chajdas, Morgan McGuire, David Luebke

Using the color/depth buffer at pixel-resolution has the problem that
edges may flicker as the edge flips back and forth between adjacent
pixels. Without using additional information, for instance back-
projection, this is an issue which makes pure post-processing algo-
rithms unstable.

SRAA tries to circumvent the problem by taking sub-pixel sam-
ples to find edges while keeping the shading still at 1 sample/pixel
to guarantee good coherence and minimal changes to the existing
pipeline (see Figure 14). In particular, SRAA requires some edge
detector similar to Jimenez’ MLAA. The edge detector is used to
determine sample similarity in order to reconstruct the color at each
sample. Once that is done, the samples get filtered – typically using
a box filter – and can be sent to the post-processing pipeline.

SRAA works on geometric edges only. That is, no shader or texture
aliasing can be resolved. Discontinuities are found by investigating
a super-resolution buffer, so both pixel as well as sub-pixel aliasing
can be resolved. This makes SRAA more stable under animation, in
particular, slow-moving edges are less prone to swimming artifacts.
SRAA works best on deferred renderers, as all information required
for SRAA is readily available in the G-Buffers. However, SRAA
can be also used with forward rendering as long as the information
necessary to determine edges is generated. This would be typically
done as part of a z-prepass.

The most basic implementation of SRAA requires the following
inputs:

• Depth and normal buffers with MSAA enabled

• Colour buffer without any MSAA (i.e. one shaded sample per
pixel)

One important requirement is that the colour buffer sample must
line up with the MSAA samples; the easiest way to guarantee is
to simply only shade the very first MSAA sample, for instance by
resolving the buffer with a pixel shader. SRAA works in two steps:

• For each sample from the MSAA input:

– If the sample is shaded, continue

– Otherwise: Compare the geometric information against
the neighboring shaded samples.

– Copy the color from the shaded sample, weighted by
similarity.

• For each pixel: Filter all samples inside the filter support.
In order to minimize blurring, a Gaussian with strong falloff
should be used, or a comparatively sharp filter.

It conceptually reconstructs color at each MSAA position and then
resolves, but since the computation of each happens simultaneously,
the high-resolution color is never actually stored. That is, there’s a
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Figure 14: Comparison between regular sampled input, SRAA with
1 shaded sample per pixel and 4 MSAA depth/normal samples, and
16x Super-Sampling.
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Figure 15: The color at each geometric sample is reconstructed by
using the neighboring shaded samples.

single register that accumulates the result of the resolve within an
unrolled loop.

The key part of the algorithm is the similarity metric, which deter-
mines whether the value should be copied across from the shaded
sample or not. A simple metric uses the distance between the plane
defined by the fragment position and normal and the position of
the other fragment. Let P (x, ~n) be the plane at point x with nor-
mal ~n. We can define a distance between (x0, ~n0) and (x1, ~n1)
as max(d(P (x0, ~n0), x1), d(P (x1, ~n1), x0) with d being the dis-
tance from the point to the plane. This works reliable in practice,
but requires MSAA’ed depth and normal buffers. A simple opti-
mization is to use the SV PrimitiveID, which is unique for each
triangle: simply comparing each sample using the primitive ID pro-
vides a good approximation and is very fast. The primitive ID can
be hashed down to 8 bit and is thus comparatively cheap.

See Subpixel Reconstruction Anti-Aliasing [Chajdas et al. 2011] for
full details.

10 Fast approXimate Anti-Aliasing (FXAA)

Speaker: Timothy Lottes (NVIDIA)

The fastest of three algorithms which make up FXAA will be cov-
ered, FXAA Console: Local Contrast Adaptive Directional Edge
Blur (see Figure 16 for an example).

Algorithm applies a 2 or 4-tap variable length box filter 90 degrees
to luma gradient, with an adjustment on filter length and direction
to help remove sub-pixel aliasing. Works as one full screen pixel
shader pass taking color as input and writing color as output. Ex-
tremely fast algorithm, averaging just 0.11 ms per million pixels on
NVIDIA GTX480. Details:

• Optimized early exit on pixels which do not need anti-
aliasing. Early exit test is based on a comparison of local
luma contrast to local maximum luma.

• Estimates filter direction as perpendicular to local luma gradi-
ent. Maximum gradient is 1, which corresponds to one pixel
in width.

• Estimates filter width by scaling direction such that the short-
est axis magnitude is 1. This has the effect of lengthening
the filter on nearly horizontal or vertical edges, while keep-
ing a very short filter on the diagonal. Length is decreased as
local contrast decreases, and finally maximum filter width is
clamped to 9 pixels.

• Estimate single pixel detail using the difference between local
luma contrast and 2x2 box filtered local luma contrast. Mod-
ify filter vector by increasing length in both x and y by this
estimation of single pixel detail. If length was zero, then add
in the positive direction. This extends the filter diagonally to
increase the amount of blur.

• Calculate a full-width 4-tap box filter, and a half-width 2-tap
box filter along the filter vector. If the luma of the full-width
filter result exceeds the range of local luma, discard the full-
width result and return the half-width result. Otherwise return
the full-width result. This step removes noise associated with
bad filter vector estimates.

11 Distance-to-edge Anti-Aliasing (DEAA)

Speaker: Hugh Malan (CCP)

Distance-to-edge AA (DEAA) simulates antialiasing by selective
blurring, similar to MLAA. The main difference with respect to



Figure 16: Comparison between the original 1x input (top) and
FXAA Console (bottom).

Figure 17: Comparison between the original 1x input (left) and
GBAA (right).

MLAA is that the pixel coverage values are derived from distance-
to-edge values calculated during the forward pass.

Scalar texture coordinates have been up so each edge of each trian-
gle has a scalar value taking the value 0 along that edge, and 1 on
the opposite vertex. During the forward pass pixel shader, the value
and screen-space derivatives of each scalar are used to estimate the
horizontal and vertical distance onscreen to the corresponding edge.
The process is repeated for each of the interpolated scalars, yielding
distances to each edge of the triangle. Distances to triangle edges
in the four directions up, down, left and right are found, and these
four distances are written out to a separate rendertarget.

The postprocess set uses this information to calculate pixel cover-
age. By considering the distance to each edge, the overlap area for
each neighbouring pixel is estimated, and the final pixel color is a
corresponding blend of the neighbouring pixel colors.

This method has somewhat different strengths and weaknesses to
MLAA. Since the distance-to-edge values are calculated with sub-
pixel precision, the postprocess blur can simulate subpixel effects
that are not possible by simple inspection of a framebuffer. (For
instance, imagine a vertical edge sweeping across the image: with
DEAA columns of pixels will fade in and out to indicate the sub-
pixel location of the edge. MLAA and other methods that are based
on the framebuffer can only provide an edge profile that advances
in single-pixel steps.)

Realtime MLAA is limited to a localized neighbourhood, so it is
unable to provide plausible antialiasing for edges with pixel steps
longer than this neighbourhood. In comparison, DEAA is able to
provide plausible antialiasing effects for edges regardless of gradi-
ent.

Conversely, DEAA is unable to provide antialiasing in several sit-
uations where MLAA can. DEAA requires all edges to have verts
on them, so the distance-to-edge logic can estimate coverage. Inter-
penetrating geometry will produce an edge with no verts; shadow
edges and texture edges are other situations where DEAA cannot
antialias the edge but MLAA can.

DEAA will fail to antialias edges correctly in a few other cases
too. If there is a subpixel triangle beside the edge - perhaps due to
foreshortening, or due to a very thin piece of geometry - then the
distance-to-edge information is incorrect, and this tends to produce
an aliased region. Very thin gaps are another problem case.

See Edge Anti-aliasing by Post-Processing [Malan 2010] for full
details.

12 Geometry Buffer Anti-Aliasing (GBAA)

Speaker: Emil Persson (Avalanche Studios)



Figure 18: Neighborhood sampling and coverage computation in
GBAA.

Anti-aliasing in real-time applications (such as games) has in recent
years primarily been addressed with multisampling (MSAA) or
similar approaches such as CSAA. Aside from substantial memory
consumption, these methods are practical and general for traditional
forward rendering approaches, and the characteristics are widely
known and understood. As more and more game engines switch
to a deferred shading model the appeal of MSAA has been signif-
icantly reduced with added complexity and the memory consump-
tion further multiplied. With limited memory on current game con-
soles alternative approaches get more interesting. Recently a num-
ber of approaches for performing anti-aliasing as a post-processing
step have been proposed. This includes MLAA, FXAA, SRAA and
DLAA, all with different pros and cons. The unifying idea behind
all these techniques is that the image is analyzed to find discontinu-
ities to smooth, optionally using the depth buffer to aid the process.
In contrast, we propose that the game engine use its knowledge of
the underlying geometry instead to smooth edges.

The author has previously proposed GPAA [Persson 2011] as a ge-
ometric post-process anti-aliasing solution. This technique also has
a pre-process step and potential scaling issues which may reduce
its attractiveness for real-time applications such as games. To ad-
dress these problems an alternative approach has been implemented
that store geometric edge information to a fullscreen render target
during the main rendering pass (see Figure 17 for an example).
This is easiest accomplished with a geometry shader, although a
vertex shader implementation is also possible. Edge orientation is
passed down to the pixel shader that writes the information to an
edge buffer. In the end the buffer is analyzed and resolved in a
fullscreen pass, similar in concept to how traditional MSAA works.
In the resolve stage each pixel is checked for information about
any edge intersecting it, and if so, what coverage the primitive that
shaded the pixel had (see Figure 18). Depending on the edge orien-
tation relative the pixel center a suitable neighbor pixel is selected
for blending. For pixels missing intersection information the im-
mediate neighborhood is searched for edges that might apply. This
is because silhouette edges will only have edge information on pix-
els on one side of the edge, whereas pixels on both sides need to
be anti-aliased. Final blending is performed by simply shifting the
texture coordinate such that the texture unit can blend using a reg-
ular linear filter. As such, only a single sample is required from the
color buffer.

13 Directionally Localized Anti-Aliasing
(DLAA)

Speaker: Dmitry Andreev (Lucas Arts)

Multisample Anti-Aliasing has been the holy grail solution in

games for many years. But unfortunately, it’s not always applica-
ble. The more multi-pass and deferred techniques we put in place,
to keep increasing visual complexity, the more costly it becomes.
Especially on consoles, directly and indirectly, when adjusting for
all the post-processing effects.

Anti-Aliasing From a Different Perspective is a story behind Direc-
tionally Localized Anti-Aliasing. It shows how a technical problem
of anti-aliasing could be solved in an artistic way. By going through
a series of prototypes, failures and successes, geting to the final idea
of the algorithm and its console specific implementation details.

The proposed solution is a novel anti-aliasing technique which was
used in The Force Unleashed 2. It is designed with simplicity in
mind, that makes it GPU and CPU friendly and allows to have ef-
ficient implementations on modern gaming consoles such as the
PlayStation3 and XBox360. It is temporally stable and very ef-
fective, offering very high quality to performance ratio.

See Anti-Aliasing From a Different Perspective [Andreev 2011] for
full details.

14 Anti-Aliasing Methods in CryENGINE 3.0

Speaker: Tiago Sousa (Crytek)

14.1 Introduction

Real time rendering Anti-Aliasing has been for many years depend-
ing on a set of strict rules imposed by graphics hardware. When
rendering technology deviates from the golden standard, for which
hardware was originally designed, issues arise, which require ef-
fort and workarounds, introducing complexity, increased memory
footprint and performance penalties.

Such has motivated exploration of alternative and robust solutions,
where the most popular trend is becoming Anti-Aliasing by post
processing, popularized by the CPU-based Morphological Anti-
Aliasing (MLAA) method.

For CryENGINE 3.0 iterations, we are exploring different alterna-
tives allowing sub-pixel accuracy and which are orthogonal to a
multiplatform environment, from performance, video memory and
implementation perspective.

Our presented work is heavily inspired by real time rendering ap-
proach to temporal anti-aliasing and by OpenGL’s Accumulation
Buffer and its many distributed ray tracing effects usages, like tem-
poral super-sampling among others (see Figure 19).

14.2 Background

The introduction of the consoles PS3 and Xbox 360, opened a big
opportunity window for Deferred Rendering and its derivatives to
become the new standard for real time rendering.

Decoupling shading or lighting from primitives rendering, brings
many benefits for all platforms: decreasing amount of drawcalls;
many light sources can be used, resulting in improved lighting qual-
ity and flexibility for lighting artists; decreased amount of shader
permutations; and an immense set of algorithms approximated in
screen space, from Screen Space Ambient Occlusion, Screen Space
Skin Surface Scattering to Stereo Rendering, are few of the exam-
ples.

This console generation also allowed for High Dynamic Range
Rendering to become a wider option for real time rendering. Un-
fortunately render target formats across multiple platforms are not



Figure 19: Crysis 2, Crytek’s first game using CryENGINE 3.0.

standardized and their performance varies significantly, requiring
additional effort.

Such adds implications as well for hardware anti-aliasing due to the
aforementioned increased memory and performance requirement.

14.3 OpenGL Accumulation Buffer SSAA

OpenGL Accumulation Buffer SSAA is achieved by adding a sub-
pixel jittering to the view frustum and a linear combination of sub-
samples. For example, 4x SSAA means rendering the scene 4
times, which is not yet very practical for realtime purposes.

14.4 Real Time Rendering Temporal AA

Real time temporal anti-aliasing, popularly denominated as Motion
Blur, has become very popular in video games and extensively used
in games like Crytek’s Crysis 1 and 2, Killzone 2 and Halo 3. Such
TAA approximation is done in screen space, by applying a direc-
tional blur from previous frame to current frame using the screen
space velocity vector. This velocity vector is computed by pro-
jecting previous frame pixel, or vertices, world space position to
screen space and computing respective delta from current and pre-
vious frame screen-space position.

14.5 Combining Concepts

By combining both concepts, we can achieve 2x SSAA or higher,
at cost of higher latency for final result.

This is done by interleaving non-uniform sub-pixel jittering to the
view frustum for different frames, storing previous frame (s). At
end of frame, post-tone mapping, previous frame sub samples are

fetched by means of velocity vector and all sub samples are then
blended selectively, based on depth, velocity or color.

A Quincunx sampling pattern was also used for the 2x SSAA ver-
sion for approximating 4x SSAA results just with 2 available sub-
samples.

14.6 Results

Orthogonal multiplatform SSAA solution with sub-pixel accuracy,
costing 1ms, at 720p, on PS3/X360 hardware. At 1080p on PC
hardware, costs 0.2 ms.
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