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Figure 1: Example frame rendered using our Ground Truth Ambient Occlusion (GTAO). The insets on the right, show comparison of
rendering using GTAO and the input radiance, while the inset on the right shows the ambient occlusion layer. Our technique achieves
high-quality ambient occlusion matching the ray-traced ground truth, in just 0.5 ms on a PS4 at 1080p.

Abstract

Ambient occlusion is ubiquitous in games and other real-time appli-
cations to approximate global illumination effects. However there
is no analytic solution to ambient occlusion integral for arbitrary
scenes, and using general numerical integration algorithms is too
slow, so approximations used in practice often are empirically made
to look pleasing even if they don’t accurately solve the AO integral.
In this work we introduce a new formulation of ambient occlusion,
GTAO, which is able to match a ground truth reference in half a
millisecond on current console hardware. This is done by using
an alternative formulation of the ambient occlusion equation, and
an efficient implementation which distributes computation using
spatio-temporal filtering. We then extend GTAO with a novel tech-
nique that takes into account near-field global illumination, which
is lost when using ambient occlusion alone. Finally, we introduce a
technique for specular occlusion, GTSO, symmetric to ambient oc-
clusion which allows to compute realistic specular reflections from
probe-based illumination. Our techniques are efficient, give results
close to the ray-traced ground truth, and have been integrated in
recent AAA console titles.

1 Introduction

Global illumination is an important visual feature, fundamental in
photo-realistic rendering as a large part of perceived scene illumi-
nation comes from indirect reflection. Unfortunately, it is in gen-
eral very expensive to compute, and cannot currently be included
in real-time applications without severe simplifications. From these
approximations, ambient occlusion (AO) is one of the most popular,
since it improves the perception of objects’ shapes (contrast), and in
captures some of the most important effects in global illumination,
in particular soft shadows due to close-by occluders. Ambient oc-
clusion is also useful in conjunction with other global illumination
algorithms and even when using precomputed (baked) irradiance,
as often these effects need to be computed (or stored) at relatively

low spatial resolution, thus computing ambient occlusion per pixel
can enhance the overall appearance of indirect illumination. Un-
fortunately, solving the ambient occlusion integral is still expensive
in certain scenarios (e.g. 1080p rendering at 60 fps), so approx-
imations have been developed in the past to achieve fast enough
performance.

We introduce a new screen-space technique for ambient occlusion,
that we call ground-truth ambient occlusion (GTAO). The main
goal of this technique is to match ground truth ambient occlusion
, while being fast enough to be included in highly-demanding ap-
plications such as modern console games. Our technique bases on
the horizon-based approach, but using an alternative formulation of
the problem. This formulation allows us to reduce significantly the
cost of the effect and can still be used to exactly solve the ambi-
ent occlusion integral under the assumption that our scene is rep-
resented as an height-field (depth buffer). We implement our tech-
nique efficiently by using temporal reprojection and spatial filtering
to compute a noise-free ambient occlusion solution in just 0.5 ms
per frame (on a Sony Playstation 4, for a game running at 1080p).

Based on this formulation, we extend our ambient occlusion solu-
tion to model a set of illumination effects generally ignored when
using ambient occlusion alone. On one hand, we introduce an ap-
proximate technique that computes a very fast correction factor to
account for near-field global illumination. This technique is based
on the observation that these is a relationship between the local sur-
face albedo and ambient occlusion term, and the multiple-bounces
near-field illumination. Following this observation, we develop an
efficient, simple and local technique to account for the local illumi-
nation that is lost when computing ambient occlusion alone.

Finally, we present a new technique, symmetric to AO, but gen-
eralized for arbitrary specular materials, that we call ground-truth
specular occlusion (GTSO).We develop its formulation, and present
an efficient technique for computing it, based on approximating the
visibility as a function of the bent normal and the ambient occlu-
sion at the point. GTSO allows to efficiently computing specular



reflection from probe-based illumination, taking into account the
occlusion at the surface.

2 Background & Related Work

The reflected radiance Lr(x, ωo) from a point x with normal nx

towards a direction ωo can be modeled as:

Lr(x, ωo) =

∫
H2

Li(x, ωi)fr(x, ωi, ωo)〈nx, ωi〉+dωi, (1)

where H2 is the hemisphere centered in x and having nx as its
axis, Li(x, ωi) is the incoming radiance at x from direction ωi,
fr(x, ωi, ωo) is the BRDF at x, and 〈nx, ωi〉+ This is a recursive
operator, that depends on the reflected (and emitted) radiance in all
the scene. While many works have focused on solving this problem,
it is still too expensive to be solved in highly demanding scenarios
such as games. Here we focus on ambient occlusion techniques,
and refer to the survey by Ritschel et al. [RDGK12] for a wider
overview on the field.

Ambient occlusion [ZIK98] approximates Equation (1), by intro-
ducing a set of assumptions: i) all light comes from an infinite uni-
form environment light, which might be occluded by the geometry
around x; ii) all surfaces around x are purely absorbing (i.e. do not
reflect any light), and iii) the surface at x is diffuse. This transforms
Equation (1) into

Lr(x, ωo) = Li
ρ(x)

π

∫
H2

V (x, ωi)〈nx, ωi〉+dωi

= Li
ρ(x)

π
A(x), (2)

whereA(x) is the ambient occlusion term at point x, ρ(x)
π

is the dif-
fuse BRDF with albedo ρ(x), and V (x, ωi) is the visibility term at
x in direction ωi, which returns 0 if there is an occluder in direction
ωi closer than a given distance r and 1 elsewhere. Note that previ-
ous works [ZIK98,Mit07,BSD08] have modeled this visibility term
V (x, ωi) as an attenuation function with respect to the distance to
the occluder, referring to A(x) as obscurance. This attenuation
function was used to create an ad-hoc solution to avoid the typical
AO overdarkening produced by ignoring near-field interreflections;
we instead introduce a novel formulation for adding this lost light
(Section 5) while keeping a radiometricaly correct ambient occlu-
sion term. It is worth to note that there is an alternate definition
of ambient occlusion where the foreshortening is ingored: while
during the rest of the paper we follow the radiometrically-correct
cosine-weighted formulation, in Appendix A we describe our tech-
nique under this alternative form.

Screen-Space Ambient Occlusion The ambient occlusion term
A(x) is affected by all the geometry in the scene, and is in
general computed via ray-tracing [ZIK98], although point-based
approaches more suitable for interactive rendering exist [Bun05,
REG+09]. However, this is still too expensive for real-time ap-
plications. To avoid the costly three-dimensional full-scene visi-
bility computations, Mittring [Mit07] proposed to move all com-
putations to screen-space, assuming that only the geometry visible
form the camera acts as occluder. This is achieved by sampling
the GPU’s depth map of the scene in a sphere of points around x,
and evaluating whether a point is occluded (behind) geometry in
the depth map. Since then, several improvements on the idea of
screen-space sampling have been made, improving the sampling
strategy [LS10, SKUT+10, HSEE15] and reducing noise by filter-
ing [MML12].

Horizon-Based Ambient Occlusion Bavoil et al. [BSD08] pro-
posed to compute the non-occluded region based on the maximum

horizon angle at which light can get the light. They transform the
integration domain into a set of directions parametrized by φ tan-
gent to the surface, and on each of them they computed the total
non-occluded solid angle, transforming Equation (2) into:

A(x) ≈ Â(x) =
1

π

∫ π

0

∫ π/2

−π/2
V (φ, θ)| sin (θ) |dθdφ, (3)

where the 1/π term is for normalization to one (i.e. A(x) ∈ [0, 1]).
Note that here we differentiate between the actual ambient occlu-
sion A(x) and the approximated screen-space term Â(x).

Alchemy Ambient Obscurance [MOBH11,MML12] later improved
robustness of the screen-space approach and increased the effi-
ciency of the sampling procedure used. While HBAO is relatively
efficient, it is still costly since many samples from the depth map
needs to be gathered per pixel when finding the maximum horizon.
Timonen [Tim13a] improves over this by performing line sweeps
along all the image, which allows him to find the maximum horizon
angle for a given direction in constant time by amortizing the sam-
pling along many pixels in the image. Closely related to our work,
the same author [Tim13b] proposed an new estimator for ambient
occlusion, which is able to match a ground truth solution at small
cost, by line-scanning and filtering the depth map, which allows
to compute ambient occlusion even for very large gathering radii,
covering the entire screen.

Our work improves these works by proposing an efficient formula-
tion of ambient occlusion, without the need of ad-hoc attenuation
functions, which saves computation time by allowing very efficient
analytical integration. Core to avoid ad-hoc attenuation function
is our efficient approximation for including the indirect illumina-
tion from the near-field occluders. In addition, all these works as-
sume diffuse surfaces: instead, we generalize the concept of ambi-
ent occlusion to non-Lambertian surfaces introducing a technique
for specular occlusion.

3 Overview

In this work we have two main goals: On one hand, we aim to
have an ambient occlusion technique that matches ground truth re-
sults, while being efficient enough to be used in demanding real-
time applications. On the other hand, we want to extend the amount
of global illumination effects that can be efficiently approximated.
The first goal imposes severe limitations in terms of input data,
number of passes, and number of instructions. Bounded by these
limitations, we develop a technique that works in screen space, tak-
ing as inputs only the depth buffer and surface normals (which can
be derived from it by differentiation or can be supplied separately),
and that can coexist and enhance other sources of global illumina-
tion (specifically baked irradiance). In order to achieve the second
goal, we relax some of the assumptions done for traditional ambient
occlusion. In particular, while we keep the assumption of a white
(or monochrome) dome illumination, we relax the assumption of
purely Lambertian surfaces, and include diffuse interreflections of
near-field occluders.

Removing previous limitations, allows us to transform Equation (2)
into:

Lr(x, ωo) = (1− F (ωo))Li
ρ(x)

π
G(A(x)) + F (ωo)L(x, ωo)S(x),

(4)

where F is the Fresnel reflectance term,A(x) is our ambient occlu-
sion term (Section 4), that matches the results of the ground truth
and that we call ground-truth ambient occlusion (GTAO), G(x) is
the function that, based on the ambient occlusion term, introduces
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Figure 2: Diagram of our reference frame when computing
horizon-based ambient occlusion.

the diffuse near-field indirect illumination (Section 5), and S(x) is
the specular occlusion term (Section 6), which is multiplied by the
preconvolved with the BRDF L. In the following we describe our
formulation for each of these terms.

4 GTAO: Ground-Truth Ambient Occlusion

Our formulation of ambient occlusion follows the horizon-based
approach of Bavoil et al. [BSD08], but presents a set of key differ-
ences that allow efficient computation without sacrificing quality.
First of all, we reformulate the reference frame on which the hori-
zons are computed, and therefore the integration domain: we follow
Timonen [Tim13a], and compute the horizon angles with respect to
the view vector ωo (see Figure 2). This means that the horizons
are searched in the full sphere around x, and that the spherical in-
tegration axis is set to ωo. In practice, this allows us to simplify
the formulation, and as we will see later to reduce the number of
transcendental functions needed.

The second main difference is that, as opposed to Bavoil’s work,
our visibility term V (φ, θ) is just a binary function, instead of a
continuous attenuation as a function of occluder distance (ambient
obscurance). Formulating AO this way allows us to compute the in-
ner integral of Equation (3) simply as the integral of the arc between
the two maximum horizon angles θ1(φ) and θ2(φ) for direction φ.
Formulating the integral around ωo, and using a binary visibility
term transforms Equation (3) into:

Â(x) =
1

π

∫ π

0

∫ θ2(φ)

θ1(φ)

cos (θ − γ)+ | sin (θ) |dθ︸ ︷︷ ︸
â

dφ, (5)

where γ is the angle between the normal nx and the view vector ωo,
and cos (θ)+ = max(cos (θ) , 0). This formulation is in fact very
important, since allows computing the inner integral â analytically
while, matching the ground truth ambient occlusion. This means
that only the outermost integral needs to be computed numerically,
by means of Monte Carlo integration with random φ. In the fol-
lowing, we detail how we compute the horizon angles and the inner
integral â.

Computing maximum horizon angles Core to the solution of
Equation (5) is to find the maximum horizon angles θ1(φ) and
θ2(φ) for a direction in the image plane t̂(φ), parametrized by the
rotation angle φ. To do this, we search in the n × n neighborhood
in pixels of pixel x̂ (the projected pixel of point x) in screen-space
directions t̂(φ) and −t̂(φ) to get each angle, and get the maximum
horizon angle with respect to the view vector ωo as:

θ1(φ) = arccos

(
max
s<n/2

〈ωs, ωo〉+
)

(6)

where ωs = s−x
‖s−x‖ and s the projection on world space of the pixel

in the image plane ŝ = x̂ + t̂(φ) · s, . Angle θ2 is computed anal-

Figure 3: Comparison between the samples computed on a single
pixel (left), adding the spatial occlusion gathering using a bilateral
reconstruction filter (middle), and adding the temporal reprojection
using an exponential accumulation buffer (right). In each image we
use 1, 16 and 96 effective sample directions per pixel respectively.

ogously with ŝ = x̂ − t̂(φ) · s. Note that the size of the neighbor-
hood n is scaled depending on the distance from the camera: this
is necessary to make Â(x) view-independent, and is clamped to a
maximum radius in pixels to avoid too large gathering radiuses on
objects very close to the near plane, which would needlessly trash
the GPU caches.

Given that we are interested only in the radiometric solid angle, we
only need to keep track on the maximum angle, and not on other
quantities (e.g. max distance) as in previous work. This allows, on
AMD GCN hardware [AMD12] (our target platform) to compute
the search loop with only one quarter speed instruction (rsqrt).
Using this formulation, the shader becomes completely memory
bound.

Solving the inner integral Timonen [Tim13a] solved this integral
(including an attenuation function) by precomputing the result in a
look-up table accessed in runtime. However, a key property of our
formulation is that, given our computed horizon angles θ1 and θ2
we can solve analytically the inner integral â in Equation (5) as

â =
1

4
(− cos(2θ1 − γ) + cos(γ) + 2θ1 sin(γ))

+
1

4
(− cos(2θ2 − γ) + cos(γ) + 2θ2 sin(γ)) . (7)

It is important to note that this formulation requires that the normal
nx lays in the plane P defined by t̂(φ) and ωo, which in general
does not hold. Following Timonen [Tim13a], we compute the angle
γ as the angle between the normalized projected normal nx

‖nx‖ ∈ P
and ωo as γ = arccos(〈 nx

‖nx‖ , ωo〉). Then, we correct the change
on the dot product by multiplying by the norm of nx, which leaves
Equation (5) as:

Â(x) =
1

π

∫ π

0

‖nx‖ â(φ) dφ. (8)

We found that our analytic solution is very fast, specially using fast
acos and sqrt instructions [Dro14]. In terms of trascendental
functions, after optimization we get a code with just 2 cos and 1
sin, plus three additional acos functions for setting up the inte-
gration domain. This makes our shader memory bounded, so the
ALU operations required make almost no difference in terms of
performance.

4.1 Implementation Details

Our technique is memory-bound, so the number of accesses to
memory determine the final performance of our target platform.
Given that our performance target is to integrate the technique in



Figure 4: Effect of using our thickness heuristic (right) in compar-
ison to not using it (left). In screen-space methods, thin occluders
such as leaves or branches tend to cast an unrealistic amount of
occlusion: assuming that their thickness is similar to their width in
screen, and correcting the maximum horizon angle we correct this
effect.

games running at 60 frames per second, we only have around half
a millisecond to do our computations, which makes implementing
optimizations mandatory. On one hand, we compute our ambient
occlusion on half-resolution, which is later upsampled to full res-
olution. Moreover, in order to compute as much samples as pos-
sible without damaging the performance, we distribute the occlu-
sion integral over both space and time: we sample the horizon in
only one direction per pixel, but use the information gathered on
a neighborhood of 4 × 4 using a bilateral filter for reconstruction.
In addition, we make aggressive use of temporal coherency by al-
ternating between 6 different rotations and reprojecting the results,
using an exponential accumulation buffer. All this gives a total of
4 × 4 × 6 = 96 effective sampled directions per pixel. Figure 3
shows the effect of the spatial and temporal gathering on the final
reconstruction.

As opposed to ambient obscurance techniques, in our formulation
we do not consider any attenuation function, which can result in
abrupt discontinuities in the computed occlusion, especially as our
gather radius does not cover the entire screen. In order to minimize
artifacts we employ a conservative attenuation strategy. The idea
is to ensure ground truth near-field occlusion, while for far-field
occlusion attenuate it to zero, since in general far-field occlusion
is baked together with the indirect lighting in our use cases. Our
attenuation function is a linear blending from 1 to 0 from a given,
large enough distance, to the maximum search radius.

Finally, since we cannot infer thickness from a depth buffer, thin
features tend to cast too much occlusion to be realistic. While this
could be solved with e.g. depth peeling, it is impractical in our
case. Instead, we introduce a conservative heuristic derived from
the assumption that the thickness of an objects is similar to their
screen space size. This heuristic introduces a modification on the
horizon search (Equation (6)), so that for each iteration s ∈ [1, n/2]
of the search we update the horizon θ as:

θ =

{
max(θs, θ) if cos (θs) ≥ cos (θs−1)

blend(θs−1, θs) if cos (θs) < cos (θs−1)
(9)

where blend is the blend operator based on the exponential moving
average, and θ0 = 0. This heuristic also has the property of not
biasing the occlusion results for simple corners (e.g. walls), which
are a common occurrence in our application. Figure 4 shows the
effect of this heuristic.

a) b) c)

g)f)e)d)

Figure 5: Input scenes used for computing the mapping between
the ambient occlusion and the near-field global illumination, ren-
dered using only ambient occlusion.

a) b) c)

e) f) g)

Figure 6: Mapping between the ambient occlusion (x-axis) and the
global illumination (y-axis) for the scenes in Figure 5 and different
albedos. We can see how a cubic polynomial fits the data very well.

5 Approximated Occlusion-Based Indirect Il-
lumination

One of the main assumptions of ambient occlusion is that the only
light reaching the shading point x comes directly from the uniform
lighting environment. This means that the light incoming due mul-
tiple surface reflections is completely lost. This energy loss trans-
lates into overdarkening of edges and corners: these areas are where
ambient occlusion affects most, but these are also where near-field
interreflections are more dominant. Previous works on ambient ob-
scurance(e.g. [MML12, Tim13b]) use ad-hoc attenuation functions
to get some of this light back. However, these are ad-hoc solutions
without an underlying physical meaning.

In order to address this issue, while remaining efficient and avoid-
ing the costly computations of a full global illumination solution,
we make the key observation that the near-field indirect illumina-
tion of a point in a region of constant albedo exhibits a strong rela-
tionship with its ambient occlusion value. This is not true in gen-
eral for varying albedos, but we care most about nearby occluders
that reflect close-range indirect illumination into x which makes
the assumptions of similar albedos more likely to happen. Further-
more, the nearly-constant albedo assumption in the ambient occlu-
sion neighborhood is also imposed by the fact we didn’t want to
sample albedos at each occluder surface, to remain in the limits of
our runtime performance requirements.

Based on this key observation, and assuming that the albedo ρ(s)
at all points s around x is ρ(s) = ρ(x), we want to design
a mapping between the albedo and ambient occlusion at x and
the reflected global illumination at x. To build this function
G(A(x), ρ(x)) we compute seven simulations with different albe-
dos (ρ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9]) in a set of scenes scene
showing a variety of different types occlusion conditions (see Fig-
ure 5). We compute both the ambient occlusion and multibounce



Figure 7: Final cubic fit for our mapping between the ambient oc-
clusion and the three-bounce global illumination for different albe-
dos (left). We observed that a linear fit between the coefficients
of the polynomial wrt the albedo gives a good continuous fit, as
shown in the three rightmost figures. The combination of these fits
give form to our model (Equation (10)).

indirect illumination (in our case, up to three bounces). Figure 6
shows the mapping between A(x) and G(x) for each albedo, and
for each scene in Figure 5. By taking the combination of all points,
we fit this mapping using a cubic polynomial for each albedo (Fig-
ure 7 (left)), generating a set of polynomial coefficient for each
scene albedo. We then observed that said coefficients were well
approximated by a linear fit as a function of the input albedo (Fig-
ure 7). This last observation allows us to build a bidimensional
mapping between the albedo ρ and ambient occlusion A:

G(A, ρ) = a(ρ)A3 − b(ρ)A2 + c(ρ)A,
a(ρ) = 2.0404 ρ− 0.3324,

b(ρ) = 4.7951 ρ− 0.6417,

c(ρ) = 2.7552 ρ+ 0.6903. (10)

This fitting-based approximation fulfills some of the requirements:
on one hand, it can be integrated seamlessly in any ambient occlu-
sion framework so that it re-incorporates the missing energy due
to global illumination. On the other hand, it is extremely efficient,
since it bases on already computed information, and without the
need of expensive light transport simulations, while giving visually
plausible results. This makes it very suitable for our target real-time
applications.

6 GTSO: Specular Occlusion

Here we introduce our solution for specular occlusion, the glossy
counterpart of the Lambertian-based ambient occlusion. As such,
we would like to develop an illumination model where the near-field
occlusion modulates the probe-based lighting while supporting ar-
bitrary BRDFs. Moreover, for the specific cases of constant probe
illumination, we would like a model delivering ground truth results,
similar to AO.

As in Section 4, lets assume that all light comes from an infinitely
far lighting environment (light probe) to express Equation (1) as:

Lr(x, ωo) =

∫
H2

V (x, ωi)Li(x, ωi)fr(x, ωi, ωo)〈nx, ωi〉+dωi.

(11)

Computing this integral by numerical integration is too expensive
for real-time applications, and the current state-of-the-art, when us-
ing Cook-Torrance [CT82] microfacet BRDFs, is to adopt an for-
mulation that assumes constant perfect visibility (∀ωi|V (x, ωi) =
1) and uses a split-integral approximation [Laz13, Kar13] as:

Lr(x, ωo) ≈ L(x) · F(x, ωo),

L(x) =
1

CL

∫
H2

=1︷ ︸︸ ︷
V (x, ωi)Li(x, ωi)D(x, ωh)〈nx, ωi〉+dωi,

F(x, ωo) =

∫
H2

fr(x, ωi, ωo)〈nx, ωi〉+dωi, (12)

where CL =
∫
H2 D(x, ωh)〈nx, ωi〉+dωi is the normalization fac-

tor needed in the first integral to guarantee it is always in the range
[0, 1] when Li(x, ωi) = 1, D(x, ωh) is the normal distribution
function of the surface [TS67], and ωh is the half vector. Intu-
itively, the second integral is the full microfacet BRDF at the pixel
under an uniform white lighting enviroment, and can be stored in a
pre-computed lookup table, while the first integral is the convolu-
tion of the actual lighting environment Li(x, ωi) with a circularly
symmetric lobe that approximates the distribution function in the
Cook-Torrance BRDF. When we represent the lighting environment
as a irradiance cubemap, this first integral can be computed by pre-
convolving the cubemap with lobes from different surfaces rough-
ness, which makes it very efficient for rendering glossy materials,
although most approximations ignore occlusion or approximate it
with heuristics.

In order to compute specular occluded ligthing, we opt for an ap-
proach similar to the split-integral approximation, and separate the
visibility term form the first integral as a constant. In essence, the
idea is computing an occlusion term that, in the spirit of ambient
occlusion, modulates the amount of illumination reaching x. This
allows us transforming Equation (12) into a product of three inte-
grals:

Lr(x, ωo) ≈ S(x, ωo) · L(x) · F(x, ωo), (13)

where the term modeling visibility S is our specular occlusion term
computed as:

S(x, ωo) =
1

CV

∫
H2

V (x, ωi)fr(x, ωi, ωo)〈nx, ωi〉+dωi, (14)

with the normalization term CV =∫
H2 fr(x, ωi, ωo)〈nx, ωi〉+dωi ensuring that the specular

occlusion S ranges into [0, 1]. As we can see, our definition
of specular occlusion is weighted by the BRDF, and thus is
directionally dependent. In the following subsection, we detail the
computations of specular occlusion S.

Interestingly, the normalization factor CV is the same as the latter
integral F , and thus it cancels out in Equation (13), leaving Equa-
tion (13) as:

Lr(x, ωo) ≈
∫
H2

V (x, ωi)fr(x, ωi, ωo)〈nx, ωi〉+dωi

· 1

CL

∫
H2

Li(x, ωi)D(x, ωh)〈nx, ωi〉+dωi. (15)

(16)

This final form has the property that for a constant probe illumina-
tion it matches exactly the ground truth. Moreover, if we compare
it with the original split-integral approximation (Equation (12)), we
can see that the main difference is that the visibility term has been
moved to the BRDF integral, and is no longer assumed constant.

6.1 Computing Specular Occlusion

Our key idea to compute specular occlusions S(x, ωo) efficiently
is to model an approximation for both the visibility and the BRDF
lobes, and then compute the intersection between these two as the
specular occlusion. With that in mind, the problem reduces to the
question on how representing both the visibility and the BRDF
compactly, and on how to compute the intersection between both.

For the visibility, we assume that it can be approximated as a cone,
computed from a bent normal [Lan02] and an ambient occlusion
term. These two can be computed on the fly (see Section 4), or just
be precomputed (e.g. stored as texture or vertex data). We chose
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Figure 8: Geometry of our specular occlusion, assuming that both
the visibility and the specular are modeled as cones (left), and with
accurate specular lobe (right).

this representation because it allows us to reuse the data from high-
quality screen-space ambient occlusion computed in Section 4. The
bent normal b acts as the direction of the cone. To compute the cone
amplitude αv , we rely on the ambient occlusion: Assuming that the
visibility is homogeneous around the bent normal, then αv is the
maximum horizon angle θ1(φ) = θ2(φ) = αv for all directions φ
(see Equation (5)). With these assumptions, the ambient occlusion
Â(x) can be expressed analytically as:

Â(x) = 1− cos(αv(x))2, (17)

which we can invert to get the cone angle αv as a function of Â(x)
as:

cos(αv(x)) =

√
1− Â(x). (18)

Similar to the visibility, we can model the specular lobe as a cone
centered on the reflection direction ωr. This imposes several as-
sumptions, including constraining the BRDF’s lobe to be rotation-
ally symmetric on ωr (which is not true with microfacet BRDFs, but
it’s the same approximation done with cubemap pre-convolution),
and approximates the actual BRDF as a single constant value. How-
ever, this allows to compute the specular occlusion as

S(x, ωo) =
Ωi(x, ωo)

Ωs(x, ωo)
, (19)

the ratio between the solid angle of the intersection of solid angles
of both the visibility and specular cones Ωi and the specular cone
Ωs (see Figure 8). This ratio can be compute analytically, and given
an gives good results, despite being a coarse approximation of the
underlying specular reflectance. Figure 8 (left) shows an example
when approximating both the visibility and the BRDF using cones
(we refer to Appendix B for details).

However, in a real-time application as our target, these computa-
tions might be still expensive, and end up baked in a pre-computed
three-dimensional look up table, parametrized by the angle between
the bent normal and the reflection vector β = arccos(〈b, ωr〉), and
the amplitude of both cones αv and αs respectively. With that in
mind, we opt for a more accurate, precomputation-based approxi-
mation, where we compute the specular occlusion S as the product
of the visibility cone ∆V and the actual BRDF F (Figure 8, right):

S(x, ωo) ≈ 1

CV

∫
H2

∆V (αv(x), β(b(x), ωi))

fr(x, ωi, ωo)〈nx, ωi〉+dωi, (20)

with ∆V (αv, β) a binary function returning 1 if β ≤ αv and 0 else-
where. Assuming an isotropic microfacet-based BRDF with a GGX
NDF [WMLT07] parametrized by a roughness value r, we model
the reflected direction ωr as the angle θo = arccos(〈nx, ωr〉) with
respect to the normal nx. With these assumptions, and omitting the

Figure 9: Comparison of ambient occlusion between our Monta
Carlo rendered ground truth (left) and our technique.

spatial dependence for clarity, we can express S as a four dimen-
sional function:

S(αv, β, r, θo) ≈
1

CV

∫
H2

∆V (αv, β)fr(ωi, θo, r)〈nx, ωi〉+dωi.

(21)

This function can be compactly baked as a four-dimensional table.
Moreover, by assuming the normal nx is the bent normal b then
θo = β, which would reduce the dimensionality of the table to
three dimensions, at the price of introducing a little error. Given
that the function is relatively smooth, we can encode it to a four-
dimensional 324 (or 323 for the 3D approximation) BC4 8-bit look
up table, which can be efficiently accessed in runtime.

7 Results

Here we show the results obtained with our techniques, and com-
pare it against a ground truth computations. These are done us-
ing explicit ray-traced ambient occlusion, multiple bounces path
tracing for our global illumination approximation, and BRDF ray-
traced sampling for the specular occlusions.

We implemented our techniques in both an stand-alone application,
and within a full-featured commercial game engine. Figure 9 com-
pares our results against a Monte Carlo ground truth: for the white
probe assumption of ambient occlusion, our technique is able to
faithfully match the ground truth, while being practical for games
at HD resolution and 60 fps. Figure 10 show in-game examples of
our GTAO, with physically-based shading and complex geometry.
Our technique computes screen-space ambient occlusion in just 0.5
ms in PS4 at 1080p, by taking advantage of both our AO formula-
tion and the spatio-temporal sample integration.

Similarly, we compare our approximation to near-field global il-
lumination against a path traced ground truth. Figure 11 shows
the Lauren model rendered with ambient occlusion only (GTAO),
and then including global illumination both with gray and colored
albedo, while Figure 12 shows the same comparison with different
values of gray albedo.

Figure 13 compares our specular occlusion technique against a
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Figure 10: Screenshots of our GTAO being used in-game for accurate and efficient ambient occlusion, in scenes with high-quality physically-
based shading and high geometric complexity. Our GTAO computes the ambient occlusion layer (in the insets) in just 0.5 ms for PS4.

Monte Carlo ground truth: while there are some small differ-
ences specially at grazing angles, our technique is able to match
most of the specular appearance of the model while taking into
account occlusions, even for non-constant illumination. Finally,
Figure 14 compares the use of the three-dimensional and four-
dimension look-up tables for computing the specular occlusion,
compared against the ground truth.

8 Conclusions

In this work we have presented several contribution to screen-space
real-time ambient occlusion. In the first place, we have presented
GTAO: an efficient formulation of ambient occlusion that matches
the Monte Carlo ground truth within a very tight budget. Our for-
mulation goes together with an efficient implementation that ag-
gressively makes use of both spatial and temporal coherence to ef-
fectively integrate almost 100 samples per pixel while computing
only one each frame. GTAO goes together with a simple but ef-
fective technique that simulates near-field diffuse inter-reflections
based on the ambient occlusion at the shading point. The technique
bases on the observation that these inter-reflections can be modeled,
from data, as a function of the local albedo and the ambient occlu-
sion. This allows to avoid the typical over-darkening resulting from
ambient occlusion.

Finally, we have introduced an approximation of specular occlu-
sion with our Ground-Truth Specular Occlusion, which generalizes
the ambient occlusion operator to deal with specular surfaces, and
introduced an efficient technique based on a precomputed look-up
table to efficiently compute the specular reflection from constant
and non-constant probe-based illumination.
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A Uniformly-weighted GTAO

Although not radiometrically correct, some works [BSD08] use a
formulation slightly different to Equation (2), removing the fore-
shortening term, and therefore weighting occlusion uniformly in
the hemisphere, instead of cosine-weighted. In this scenario, our
formulation for GTAO would also be valid, with the modification
of Equation (5), which becomes:

Â(x) =
1

2π

∫ π

0

∫ θ2(φ)

θ1(φ)

| sin (θ) |dθ︸ ︷︷ ︸
â

dφ. (22)

Removing the cosine-term not only changes the normalization fac-
tor, from 1/π to 1/(2π), but also changes the full inner integral â.
Fortunately, in this form this integral has also an analytic solution
as:

â = 2− cos (θ1)− cos (θ2) . (23)

Note that since here there is not cosine term with respect to the
normal, the projection needed for cosine-weighted GTAO (Equa-
tion (8)) is not needed.

This formulation of GTAO does not support the near-field global
illumination approximation shown in Equation (10), since the cu-
bic polynomial fit has been done for the radiometrically-correct
cosine-weighted GTAO. However, occlusion computed using Equa-
tion (22) can be used to determine the aperture αv(x) of the visi-
bility cone in Section 6 as:

cos(αv(x)) = 1− Â(x). (24)

B Cone-to-Cone GTSO

In order to compute our GTSO for specular occlusion based on
Equation (19), we need to compute the visibility and specular
cones, defined by a direction and an aperture, and their intersec-
tion solid angle Ωi. The visibility cone is explained in Section 6
(Equation (18)). In the case of the specular cone, its direction is de-
fined by the reflection vector ωr. Its aperture αs, on the other hand,
it is defined by the roughness r (or specular power p in the case of a
Phong BRDF). Since there are no exact solution for this, we opt of
an approach similar to the one by Uludag [Ulu14], which uses the
Phong importance sampling routine by Walter et al. [WMLT07] to
relate the aperture with the Phong power p:

αs = arccos
(
u

1
p+2

)
, (25)

where u is a constant. As opposed to Uludag, we do not obtain u
by fitting the cone to lobes (u = 0.244), but minimize differences
between resulting GTSO and Monte Carlo ground truth references,
getting u = 0.01. Then, by mapping roughness Phong specular
power p to r by using r = (2/(p + 2))0.5 for faster evaluation we
get a final aperture cone:

cos (αs) = 0.01
1
p+2 = 0.010.5 r2 = e−2.30259 r2 = 2−3.32193 r2 .

(26)

Once we have both cones, the only thing left is computing the inter-
section solid angle Ωi from these cones. This intersection has ana-
lytical solution [OS07, Maz12], as a function of the cone apertures
and the angle between their respective directions, the bent normal
b and the reflection direction ωr.


